Abstract
Truth discovery is an effective tool to unearth truthful answers in crowdsourced question answering systems. Incentive mechanisms are necessary in such systems to stimulate worker participation. However, most of existing incentive mechanisms only consider compensating workers’ resource cost, while the cost incurred by potential privacy leakage has been rarely incorporated. More importantly, to the best of our knowledge, how to provide personalized payments for workers with different privacy demands remains uninvestigated thus far. In this paper, we propose a contract-based personalized privacy-preserving incentive mechanism for truth discovery in crowdsourced question answering systems, named PINTION, which provides personalized payments for workers with different privacy demands as a compensation for privacy cost, while ensuring accurate truth discovery. The basic idea is that each worker chooses to sign a contract with the platform, which specifies a privacy-preserving level (PPL) and a payment, and then submits perturbed answers with that PPL in return for that payment. Specifically, we respectively design a set of optimal contracts under both complete and incomplete information models, which could maximize the truth discovery accuracy, while satisfying the budget feasibility, individual rationality and incentive compatibility properties. Experiments on both synthetic and real-world datasets validate the feasibility and effectiveness of PINTION.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have