Abstract
Cost and reliability have hindered entomopathogenic nematodes (EPNs) from realizing their full market size. Research approaches continually evolve in response to these issues. They address EPN basics, but other issues are less recognized among masses working on these biocontrol agents. So, this review emphasizes on the due but less recognized roles to optimize EPN research and get better findings in nematode realm. Being almost impossible for nematologists to act united, they need to use standardized procedures which allow future reviews to be analytical and may build on them. Current atypical sampling procedures of EPNs may lead to erratic results. Comparable sampling may better enable grasping the interaction between EPN distribution and agricultural management to develop more swiftly field application techniques and can introduce EPNs’ populations to a more even distribution designed to enhance their efficacy. Functional sampling should be expanded. Furthermore, EPNs should be included in integrated pest management programs in ways that make them complimentary or superior to chemical pesticides. Further modeling of EPNs’ populations should be tried. The few transgenic methods applied in EPNs should be followed up to address non-stability of selected beneficial traits and markers of beneficial genes. Awareness-raising of more growers, cooperatives, and extensions of EPNs as bio-insecticides for both plant and livestock pests should be attempted in earnest via broad and deep training. We should better communicate and apply the positive trends and standardization in EPNs’ research. Required but less known services to optimize research in the nematode realm should further be addressed.
Highlights
The basics of entomopathogenic nematology such as biology, taxonomy, mutualism, and use for agricultural pest control have recently been well reviewed and updated by several authors in Campos-Herrera (2015) and Abd-Elgawad et al (2017)
Entomopathogenic nematodes (EPNs) contain two families: Steinernematidae, represented by the genera Steinernema and Neosteinernema, and Heterorhabditidae, represented by the genus Heterorhabditis. Their life cycle is unique involving a symbiotic relationship with pathogenic bacteria in the genus Xenorhabdus for Steinernema and Photorhabdus
The Infective stage juveniles (IJs) of Heterorhabditis develop into hermaphroditic females and subsequently into amphimictic males and females, heterogenic life cycle
Summary
The basics of entomopathogenic nematology such as biology, taxonomy, mutualism, and use for agricultural pest control have recently been well reviewed and updated by several authors in Campos-Herrera (2015) and Abd-Elgawad et al (2017). Functional sampling is intended to choose the appropriate method, timing, site, and technique to extract EPNs adapted to control specific pest(s).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.