Abstract
BackgroundDue to their environmentally friendly character, entomopathogenic fungi (EPF) are becoming increasingly used as microbial agents in biological pest control over chemical pesticides. However, EPF are sensitive to the influence of abiotic factors, such as temperature, radiation, and humidity. To improve their efficiency as bioinsecticides, in this work, the development of a new microparticles-based formulation loading EPF conidia (B. bassiana aerial conidia) into sodium alginate/maltodextrin microparticles obtained by spray-drying was proposed. Different concentrations of both polysaccharides were tested to reach the optimal ratio and ensure a high viability of encapsulated conidia.ResultsAll the produced formulations showed a moisture content < 10% and water activity (aw) < 0.4. Microparticles obtained with 2% sodium alginate and 8% maltodextrin were able to retain 89.5% of the viability of encapsulated conidia, thus being selected for further characterization. Scanning electron microscopy showed microparticles with a smooth surface, varied sizes, and irregular morphology. Microparticles retained 5.44 × 108 conidia/g, presented high hygroscopicity and high suspensibility rate, yet low wettability and water activity (aw) of 0.33. The pH value ranged from 6.46 to 6.62. Microparticles were able to complete release the loaded conidia after 30 min, under constant stirring. When exposed to thermal stress (45 °C), microparticles promoted thermal protection to conidia. Enhanced pathogenicity of B. bassiana conidia against P. xylostella was also confirmed achieving 83.1 ± 5.5%, whereas non-encapsulated conidia reached only 64.8 ± 9.9%.ConclusionsThis study confirms that the encapsulation of B. bassiana fungus conidia in sodium alginate/maltodextrin microparticles by spray-drying is a promising technological approach for the biological control of agricultural pests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.