Abstract

We report the first 3+1 dimensional model development for energetic atomic oxygen ions in the Earth's radiation belts. Energetic Oxygen ions cans be supplied to the Earth's Inner magnetosphere from the sun (as a component of solar wind and solar energetic particles), from anomalous cosmic rays, and from acceleration processes acting on ionospheric atomic oxygen ions. We have built a multi-dimensional oxygen ion model in the following free parameters: geomagnetic L-shell, the magnetic moment, the second adiabatic invariant, and the discrete charge state number. Quiet time, steady state oxygen ion distributions have been obtained numerically from an assumed outer radiation zone boundary condition at L=7, average values of the radial diffusion coefficients, and standard values for the exospheric neutral densities due to the MSIS-86 upper atmosphere and exosphere neutral thermal particle density model. Average distributions of free electrons in the plasmasphere were also assumed with a mean plasmapause location just beyond L=4. We included the six lowest ionic charge states of atomic oxygen ( 16O) based on an existing charge exchange cross section compilation by Spjeldvik and Fritz (1978). Computed oxygen ion distributions include the resulting equilibrium structure of energy oxygen ions between 10 KeV and 100 MeV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call