Abstract

Modified PH 13-8Mo alloy exhibits a good combination of corrosion resistance and mechanical properties for demanding applications in aerospace, petrochemical, and tooling industries. Additive manufacturing, specifically the laser metal deposition process with powder as feedstock (LMDp), has the potential to be utilized in these industries. However, very limited knowledge on the LMDp of this alloy currently exists. The aim of this work was, therefore, to deposit a multi-track single layer of modified PH 13-8Mo alloy as a first step towards 3D geometries, and to analyze the resulting microstructure by using Optical Microscopy, Scanning Electron Microscopy, X-Ray Diffraction, Electron Backscatter Diffraction, and micro-hardness. It was found that the multi-track single layer was free from major defects. The microstructure was heterogeneous, and it consisted of a martensitic matrix and small amounts of δ ferrite, austenite, and AlN. The results of this research will be used to tailor the microstructure and properties of future 3D additively manufactured components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.