Abstract

Hydrogen detection is of great importance in chemical and energy industries. Optical fiber hydrogen sensors show flexibility and compactness, and have the potential for distributed analysis. However, traditional fiber sensors encounter a challenge with light interacting with hydrogen directly because hydrogen only displays weak quadrupole absorption, and metallic palladium and platinum thin-film coatings are typically used as an optically detectable label. Here, based on stimulated Raman spectroscopy in hollow-core photonic crystal fibers, we investigate the label-free optical fiber distributed hydrogen sensors operating in the optical telecommunication band. The approach of distributed Raman measurement represents a new paradigm in fiber sensors, potentially allowing distributed chemical analysis in gas or liquid phase with high sensitivity and selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.