Abstract

Raman-activated cell sorting (RACS) is a promising single-cell analysis technology that is able to identify and isolate individual cells of targeted type, state or environment from an isogenic population or complex consortium of cells, in a label-free and non-invasive manner. However, compared with those widely used yet labeling-required or staining-dependent cell sorting technologies such as FACS and MACS, the weak Raman signal greatly limits the further development of the existing RACS systems to achieve higher throughput. Strategies that can tackle this bottleneck include, first, improvement of Raman-acquisition efficiency and quality based on advanced Raman spectrometers and enhanced Raman techniques; second, development of novel microfluidic devices for cell sorting followed by integration into a complete RACS system. Exploiting these strategies, prototypes for a new generation of RACS have been demonstrated, such as flow-based OT-RACS, DEP-RACS, and SERS/CARS flow cytometry. Such high-throughput microfluidic RACS can provide biologists with a powerful single-cell analysis tool to explore the scientific questions or applications that have been beyond the reach of FACS and MACS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call