Abstract

Quantum computers are promising tools for the simulation of many-body systems, and among those, QCD stands out by its rich phenomenology. Every simulation starts with a codification, and here we succently review a newly developed compact encoding based on the identification between registers and particles; the quantum memory is divided into registers, and to each we associate a Hilbert space of dimension the number of degrees of freedom of the codified particles. In this way we gain an exponential compression over direct encodings for a low number of particles with many degrees of freedom. As an example we apply this encoding on a two-register memory and implement antisymmetrization and exponentiation algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.