Abstract
Resonant chalcogenpyrylium nanotags demonstrate an exceptional surface enhanced Raman scattering (SERS) performance for use in SORS applications. Using surface enhanced spatially offset Raman spectroscopy (SESORS), nanotags modified with a chalcogenpyrylium dye were observed at concentrations as low as 1 pM through 5 mm of tissue. Calculated limits of detection suggest that these SERS nanotags can be detected at 104 fM using surface enhanced spatially offset resonance Raman scattering (SESORRS) demonstrating their potential for in vivo applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.