Abstract
This paper introduces an innovative staircase shape feature extraction method for walking-aid robots to enhance environmental perception and navigation. We present a robust method for accurate feature extraction of staircases under various conditions, including restricted viewpoints and dynamic movement. Utilizing depth camera-mounted robots, we transform three-dimensional (3D) environmental point cloud into two-dimensional (2D) representations, focusing on identifying both convex and concave corners. Our approach integrates the Random Sample Consensus algorithm with K-Nearest Neighbors (KNN)-augmented Iterative Closest Point (ICP) for efficient point cloud registration. The results show an improvement in trajectory accuracy, with errors within the centimeter range. This work overcomes the limitations of previous approaches and is of great significance for improving the navigation and safety of walking assistive robots, providing new possibilities for enhancing the autonomy and mobility of individuals with physical disabilities.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have