Abstract

Coronaviruses are the causative agents of mild to severe respiratory and intestinal infections in humans. They are the largest RNA viruses, which genomes and encoded RNAs are known to fold into the highly-order structures that play essential roles in the viral replication and infectivity cycle. The recent outbreaks of new pathogenic coronaviruses steered researchers’ attention into the possibility of targeting their RNAs directly with novel RNA-specific drugs and therapeutic strategies. In this manuscript, we highlight the recent biochemical and biophysical methodological advancements that yielded more in-depth insight into the structural and functional composition of coronaviruses cis-acting RNA motifs. We discuss the complexity of these RNA regulatory elements, their intermolecular interactions, post-transcriptional regulation, and their potential as druggable targets. We also indicate the location and function of unstructured and highly-conserved regions in coronaviruses RNA genomes representing viable aims for antisense oligonucleotide or CRISPR-based antiviral strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.