Abstract

Nowadays, task allocation has attracted increasing attention in the Internet of Vehicles. To efficiently allocate tasks to suitable workers, users usually need to publish their task interests to the service provider, which brings a serious threat to users' privacy. Existing task allocation schemes either cannot comprehensively preserve user privacy (i.e., requester privacy and worker privacy) or introduce tremendous resource overhead. In this paper, we propose an efficient and privacy-preserving versatile task allocation scheme (PPVTA) for the Internet of vehicles. Specifically, we utilize the randomizable matrix multiplication technique to preserve requester privacy and worker privacy. Then, the polynomial fitting technique is leveraged to enrich the randomizable matrix multiplication to support versatile task allocation functions, such as threshold-based task allocation (PPVTA-I), conjunctive task allocation (PPVTA-II), and task allocation with bilateral access control (PPVTA-III). We formally analyze the security of our constructions to prove the security under the chosen-plain attack. Based on a prototype, experimental results demonstrate that our constructions have acceptable efficiency in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.