Abstract

As the two largest emerging emitters with the highest growth in operational carbon emissions from residential buildings, the historical emission patterns and decarbonization efforts of China and India warrant further exploration. This study aims to be the first to present a carbon intensity model considering end-use performances, assessing the operational decarbonization progress of residential building in India and China over the past two decades using the newest decomposing structural decomposition approach. Results indicate (1) the annual operational carbon intensity increased by 1.4% and 2.5% in China and India, respectively, between 2000 and 2020. Household expenditure-related energy intensity and emission factors were crucial in decarbonizing residential buildings. (2) Building electrification played a significant role in decarbonizing space cooling (−87.7 in China and − 130.2 kg of carbon dioxide (kgCO2) per household in India) and appliances (∼ −169.7 in China and ∼ −43.4 kgCO2 per household in India). (3) China and India collectively decarbonized 1498.3 and 399.7 M-tons of CO2 in residential building operations, respectively. In terms of decarbonization intensity, India (164.8 kgCO2 per household) nearly caught up with China (182.5 kgCO2 per household) in 2020 and is expected to surpass China in the upcoming years, given the country's robust annual growth rate of 7.3%. Overall, this study provides an effective data-driven tool for investigating the building decarbonization potential in China and India, and offers valuable insights for other emerging economies seeking to decarbonize residential buildings in the forthcoming COP2811COP28 is the abbreviation of 2023 United Nations Climate Change Conference. age.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.