Abstract

The purpose of this work was to transform a regional biowaste into value-added chemicals and products through a modest thermo-catalytic pyrolysis process. ZSM-11 (Zeolite Socony Mobile-11) zeolites modified by nickel (Ni) incorporation (1–8 wt%) were synthesized and characterized by means of X-Ray Diffraction, Inductively Coupled Plasma Atomic Emission Spectroscopy, Infrared Fourier Transform Spectroscopy, UV–Vis Diffuse Reflectance Spectra and Temperature Programmed Reduction. Results demonstrated that Ni was mainly incorporated as oxide. These porous materials were evaluated as heterogeneous catalysts to improve biooil composition. In this sense, higher hydrocarbon yields, and quality chemicals were obtained and oxygenates were diminished. The deactivation of the most active material was studied over six cycles of reaction. In order to achieve the circular bioeconomy postulates, the obtained biochar (usually considered a residue) was further transformed through a physicochemical activation. The obtained activated biochars were extensively characterized.

Highlights

  • In its 17 Sustainable Development Goals, the United Nations promotes the principle of optimum and responsible usage of resources for purposes leading to a convincing transition to a circular economy

  • Taking Olofsson and Borjesson [8] ideas, and in order to minimize residues generation, we propose a case of open-loop recycling by employing the biochar in a subsequent system: synthesis of activated biochar (AB)

  • It was observed that the reduction in SBET was larger when the initial SBET was higher

Read more

Summary

Introduction

In its 17 Sustainable Development Goals, the United Nations promotes the principle of optimum and responsible usage of resources for purposes leading to a convincing transition to a circular economy. The main idea of the so-called circular economy consists in advanced redesigning and technological breakthroughs to minimize waste [1]. From these ideas, the concept of “circular bioeconomy” is proposed to be a more efficient biobased renewable resource management. Considering its importance for food production, a competitive situation should be avoided. In this sense, agricultural wastes are PS contains around 50% cellulose, 20% hemicellulose and 30% lignin [4] that makes it difficult to digest and unable as feedstock for animals. In a previous paper [5] we have shown the importance of this thermal process

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.