Abstract
Doxycycline hydrochloride (DCH) could be continuously removed by Bacillus thuringiensis S622 with the in-situ biogenic manganese oxide (BioMnOx) via oxidizing/regenerating. The DCH removal rate was significantly increased by 3.01-fold/1.47-fold at high/low Mn loaded via the integration of biological (intracellular/extracellular electron transfer (IET/EET)) and abiotic process (BioMnOx, Mn(III) and •OH). BioMnOx accelerated IET via activating coenzyme Q to enhance electrons transfer (ET) from complex I to complex III, and as an alternative electron acceptor for respiration and provide another electron transfer transmission channel. Additionally, EET was also accelerated by stimulating to secrete flavins, cytochrome c (c-Cyt) and flavin bounded with c-Cyt (Flavins & Cyts). To our best knowledge, this is the first report about the role of BioMnOx on IET/EET during antibiotic biodegradation. These results suggested that Bacillus thuringiensis S622 incorporated with BioMnOx could adopt an alternative strategy to enhance DCH degradation, which may be of biogeochemical and technological significance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.