Abstract
We propose new approximate algorithms for combinatorial auctions with massively large number of (more than 100,000) bids. In this paper, we focus on a more practical approximated algorithm in the context of revenue maximization. We propose a hill-climbing greedy algorithm, a SA-like random search algorithm, and their enhancement for searching multiple key parameter values. The experimental results demonstrate that our algorithms perform approximately 0.997 optimality compared with the optimal solutions and better than previously presented approximated algorithms. We also demonstrate that our algorithms are a kind of anytime algorithmthat bring better results in shorter computational time that can be applied to large and dynamic electronic markets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.