Abstract

Generally, mereological relations are modeled using fragments of first-order logic(FOL) and difficulties arise when meta-reasoning is done over their properties, leading to reason outside the logic. Alternatively, classical languages for conceptual modeling such as UML lack of formal foundations resulting in ambiguous interpretations of mereological relations. Moreover, they cannot prove that a given specification is correct from a logical perspective. In order to address all these problems, we suggest a formal framework using a dependent (higher-order) type theory such as those used in program checking and theorem provers (e.g., Coq). It is based on constructive logic and allows reasoning in different abstraction levels within the logic. Furthermore, it maximizes the expressiveness while preserving decidability of type checking and results in a coherent theory with a powerful sub-typing mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.