Abstract

Efficient resource allocation of computational resources to services is one of the predominant challenges in a cloud computing environment. Furthermore, the advent of cloud brokerage and federated cloud computing systems increases the complexity of cloud resource management. Cloud brokers are considered third party organizations that work as intermediaries between the service providers and the cloud providers. Cloud brokers rent different types of cloud resources from a number of cloud providers and sublet these resources to the requesting service providers. In this paper, an autonomic performance management approach is introduced that provides dynamic resource allocation capabilities for deploying a set of services over a federated cloud computing infrastructure by considering the availability as well as the demand of the cloud computing resources. A distributed control based approach is used for providing autonomic computing features to the proposed framework via a feedback-based control loop. This distributed control based approach is developed using one of the decomposition–coordination methodologies, named interaction balance, for interactive bidding of cloud computing resources. The primary goals of the proposed approach are to maintain the service level agreements, maximize the profit, and minimize the operating cost for the service providers and the cloud broker. The application of interaction balance methodology and prioritization of profit maximization for the cloud broker and the service providers during resource allocation are novel contributions of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.