Abstract
We explore the behaviour of barotropic and irrotational fluids with a small viscosity under the effect of first-order acoustic perturbations. We discuss, following the extant literature, the difficulties in gleaning an acoustic geometry in the presence of viscosity. In order to obviate various technical encumbrances, when viscosity is present, for an extraction of a possible acoustic geometry, we adopted a method of double perturbations, whereby dynamical quantities such as the velocity field and potential undergo a perturbation both in viscosity and in an external acoustic stimulus. The resulting perturbation equations yield a solution which can be interpreted in terms of a generalised acoustic geometry, over and above the one known for inviscid fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.