Abstract

Analog models of general relativity have received great attention in the last few years, since it is believed that these models are shedding light on possible experimental verifications of some fundamental problems in black hole physics, such as the evaporation of black holes and semiclassical quantities. The idea of using supersonic acoustic flows as analog systems to mimic some properties of black hole physics was proposed for the first time by Unruh. The basis of the analogy between gravitational black hole and sonic black holes comes from considering the propagation of acoustic disturbances on a barotropic, inviscid, inhomogeneous, and irrotational (at least locally) fluid flow. It is well known, that the equation of motion for this acoustic disturbance (described by its velocity potential) is identical to the Klein-Gordon equation for a massless scalar field minimally coupled to gravity in a curved spacetime. In this letter, we discuss the role of the Gullstrand-Painlevè metric in acoustic geometry and the physical interpretation of these models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.