Abstract

Many deep gas wells contain acid gas components. Hydrogen sulfide (H2S) is one of the typical acid gases. Accurate flow simulations for H2S/H2O mixtures in reservoirs and wellbores requires a proper thermodynamic model that is capable of accurately modeling the H2S/H2O mixtures under in-situ conditions. This study aims at screening and developing cubic-equation-of-state-based thermodynamic models that can well describe the phase behavior of H2S/H2O mixtures. Peng-Robinson equation of state (PR EOS) (Peng and Robinson, 1976) and the Huron-Vidal (HV) (Huron and Vidal, 1979) mixing rule are used as the primary modeling framework. The temperature-dependent binary interaction parameter (BIP) correlations in the HV mixing rule are established by matching the measured vapor-liquid equilibria (VLE) data for H2S/H2O mixtures collected from the literature. The experimental VLE data cover a temperature range of 273.15–627.85 K and a pressure range of 0.41–303 bar, while the experimental density data cover a temperature range of 294.35–705.30 K and pressures up to 350 bar. Different volume translation strategies are examined in terms of their accuracy in reproducing the measured density data for H2S/H2O mixtures. We employ PR EOS together with the optimal BIP strategy in the HV mixing rule to reproduce the mutual solubility of H2S and H2O in VLE. The calculated results show a good agreement with the experimental data, especially at high temperatures and pressures; the average absolute percentage deviation (%AAD) of 4.90% and 4.95% can be obtained for reproducing the vapor-phase H2O solubility and the aqueous-phase H2S solubility, respectively. With the inclusion of the volume translation model proposed by Abudour et al. (2013), PR EOS together with the optimal BIP strategy in the HV mixing rule shows a good performance in estimating the aqueous-phase density for H2S/H2O VLE, i.e., an %AAD of 5.42% in reproducing the measured density data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call