Abstract
This study thoroughly investigates the solubility of oxazepam in supercritical carbon dioxide (SC-CO2) at temperatures of 308, 318, 328, and 338 K and pressures ranging from 12 to 30 MPa. The solubility measurements revealed a mole fraction of oxazepam ranging from 2.50 × 10−6 to 7.13 × 10−5, with the highest solubility observed at 338 K and 30 MPa. The solubility data were effectively modeled using semi-empirical density-based models (Mendez-Santiago and Teja (MST), Chrastil, Bartle et al., Kumar and Johnston (K-J), and Alwi-Garlapati), two equations of state (Peng-Robinson and modified-Pazuki) and regular solution models. The K-J model emerged as the best fit for the experimental data, boasting the lowest Average Absolute Relative Deviation (AARD) value of 7.73 %. The Peng-Robinson equation of state outperformed the modified-Pazuki equation, with AARD values of 15.71 % and 18.15 %, respectively. The study's key finding is the low solubility of oxazepam in SC-CO2, which suggests that supercritical antisolvent techniques could be effectively employed for synthesizing nanoparticles of this pharmaceutical compound. These findings have practical implications as they provide valuable insights for optimizing drug formulation processes and demonstrate the potential of SC-CO2 in pharmaceutical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.