Abstract
Research in powered prosthesis control has explored the use of impedance-based control algorithms due to their biomimetic capabilities and intuitive structure. Modern impedance controllers feature parameters that smoothly vary over gait phase and task according to a data-driven model. However, these recent efforts only use continuous impedance control during stance and instead utilize discrete transition logic to switch to kinematic control during swing, necessitating two separate models for the different parts of the stride. In contrast, this paper presents a controller that uses smooth impedance parameter trajectories throughout the gait, unifying the stance and swing periods under a single, continuous model. Furthermore, this paper proposes a basis model to represent intertask relationships in the impedance parameters-a strategy that has previously been shown to improve model accuracy over classic linear interpolation methods. In the proposed controller, a weighted sum of Fourier series is used to model the impedance parameters of each joint as continuous functions of gait cycle progression and task. Fourier series coefficients are determined via convex optimization such that the controller best reproduces the joint torques and kinematics in a reference able-bodied dataset. Experiments with a powered knee-ankle prosthesis show that this simpler, unified model produces competitive results when compared to a more complex hybrid impedance-kinematic model over varying walking speeds and inclines.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have