Abstract

Proton magnetic resonance spectroscopy is a powerful tool to investigate neurochemistry and physiology invivo. Recently researchers have started to use MRS to measure neurotransmitter changes related to neural activity, so called functional MRS (fMRS). Particular interest has been placed on measuring glutamate changes associated with neural function, but differences are reported in the size of changes seen. This review discusses fMRS, and includes meta-analyses of the relative size of glutamate changes seen in fMRS, and the impact experimental design and stimulus paradigm may have. On average glutamate was found to increase by 6.97% (±1.739%) in response to neural activation. However, factors of experimental design may have a large impact on the size of these changes. For example an increase of 4.749% (±1.45%) is seen in block studies compared to an increase of 13.429% (±3.59) in studies using event related paradigms. The stimulus being investigated also seems to play a role with prolonged visual stimuli showing a small mean increase in glutamate of 2.318% (±1.227%) while at the other extreme, pain stimuli show a mean stimulation effect of 14.458% (±3.736%). These differences are discussed with regards to possible physiologic interpretations, as well experimental design implications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.