Abstract

In order to understand the importance of functional proteins in mosquito behavior, following blood meal, a baseline proteomic dataset is essential for providing insights into the physiology of blood feeding. Therefore, in this study as first step, in solution and 1-D electrophoresis digestion approach combined with tandem mass spectrometry (nano LC-MS/MS) and computational bioinformatics for data mining was used to prepare a baseline proteomic catalogue of salivary gland proteins of sugar fed An. culicifacies mosquitoes. A total of 106 proteins were identified and analyzed by SEQUEST algorithm against mosquito protein database from Uniprot/NCBI. Importantly, D7r1, D7r2, D7r4, salivary apyrase, anti-platelet protein, calreticulin, antigen 5 family proteins were identified and grouped on the basis of biological and functional roles. Secondly, differential protein expression and annotations between salivary glands of sugar fed vs blood fed mosquitoes was analyzed using 2-Delectrophoresis combined with MALDI-TOF mass spectrometry. The alterations in the differential expression of total 38 proteins was observed out of which 29 proteins like beclin-1, phosphorylating proteins, heme oxygenase 1, ferritin, apoptotic proteins, coagulation and immunity like, serine proteases, serpins, c-type lectin and protein in regulation of blood feeding behavior were found to be up regulated while 9 proteins related to blood feeding, juvenile hormone epoxide hydrolase ii, odorant binding proteins and energy metabolic enzymes were found to be down regulated. To our knowledge, this study provides a first time baseline proteomic dataset and functional annotations of An. culicifacies salivary gland proteins that may be involved during the blood feeding. Identification of differential salivary proteins between sugar fed and blood fed mosquitoes and their plausible role may provide insights into the physiological processes associated with feeding behavior and sporozoite transmission during the process of blood feeding.

Highlights

  • Malaria, a vector borne parasitic disease is caused by protozoa in the genus Plasmodium and affects 198 million cases and leads to an estimated 584,000 deaths worldwide in 2013 [1]

  • In order to understand the importance and functional role of novel expressed or annotated mosquito salivary gland proteins following blood meal, we have carried out our analyses on doi:10.1371/journal.pone.0161870.g001

  • This study presents the first proteomic baseline map and cataloging of the salivary glands of sugar fed female An. culicifacies with detailed putative functional annotation of all the identified proteins

Read more

Summary

Introduction

A vector borne parasitic disease is caused by protozoa in the genus Plasmodium and affects 198 million cases and leads to an estimated 584,000 deaths worldwide in 2013 [1]. Various Plasmodium species are injected into the human host typically via the bites of female Anopheles mosquito. In order to transmit malaria, at least two bites are required by the mosquito, one for acquiring the parasite infection and other for the transmission of malaria parasites to a new human host [4]. The salivary glands of female Anopheles mosquitoes are important because infective form of malaria parasite must invade mosquito salivary glands, before they are transmitted to the human host. For the intake of blood meal, female mosquitoes inject the concoction of these salivary molecules into the vertebrate host and this complex saliva mixture act as a transmission fluid for the parasite [10]

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call