Abstract

Waveform nonlinear optics aims to study and control the nonlinear interactions of matter with extremely short optical waveforms custom-tailored within a single cycle of light. Different technological routes to generate such multimillijoule sub-optical-cycle waveforms are currently pursued, opening up unprecedented opportunities in attoscience and strong-field physics. Here, we discuss the experimental schemes, introduce the technological challenges, and present our experimental results on high-energy sub-cycle optical waveform synthesis based on (1) parametric amplification and (2) induced-phase modulation in a two-color-driven gas-filled hollow-core fiber compressor. More specifically, for (1), we demonstrate a carrier-envelope-phase (CEP)-stable, multimillijoule three-channel parametric waveform synthesizer generating a $>$ 2-octave-wide spectrum (0.52–2.4 ${\boldsymbol \mu}$ m). After two amplification stages, the combined 125- ${\boldsymbol \mu}$ J output supports 1.9-fs FWHM waveforms; energy scaling to $>$ 2 mJ is achieved after three amplification stages. FROG pulse characterization of all three second-stage outputs demonstrates the feasibility to recompress all three channels simultaneously close to the Fourier limit and shows the flexibility of our intricate dispersion management scheme for different experimental situations. For (2), we generate CEP-stable 1.7-mJ waveforms covering 365–930 nm (measured at 1% of the peak intensity) obtained from induced-phase modulation in a two-color-driven gas-filled hollow-core fiber. Using custom-designed double-chirped mirrors and a UV spatial light modulator will permit compression close to the 0.9-fs FWHM transform limit. These novel sources will become versatile tools for controlling strong-field interactions in matter and for attosecond pump–probe spectroscopy using VIS/IR and XUV/soft-X-ray pulses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.