Abstract

In this Letter, we report a significant step forward in the design of single-optical-element optics for two-dimensional (2D) hard X-ray differential-interference-contrast (DIC) imaging based on modified photon sieves (MPSs). MPSs were obtained by a modified optic, i.e., combining two overlaid binary gratings and a photon sieve through two logical XOR operations. The superior performance of MPSs was demonstrated. Compared to Fresnel zone plates-based DIC diffractive optical elements (DOEs), which help to improve contrast only in one direction, MPSs can provide better resolution and 2D DIC imaging. Compared to normal photon sieves, MPSs are capable of imaging at a significantly higher image contrast. We anticipate that MPSs can provide a complementary and versatile high-resolution nondestructive imaging tool for ultra-large-scale integrated circuits at 45 nm node and below.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.