Abstract

A photon sieve (PS) is a revolutionary optical instrument that provides high resolution imaging at a fraction of the weight of typical telescopes, with an areal density of 0.3 kg/m2 compared to 25 kg/m2 for the James Webb Space Telescope. The photon sieve is a variation of a Fresnel Zone Plate consisting of many small holes arranged in a series of concentric rings. The sieve works by diffracting light of a certain wavelength to a specified focal point for imaging, so that only a specific wavelength can be imaged. Moreover, the better image contrast and higher signal-to-noise ratios come from suppressing higher diffracted orders by apodizing the number of pinholes in the outer rings. Finally, a photon sieve requires less supports and can withstand more deformation without a reduction in the imaging qualities.Due to these properties, various groups have created PS CubeSats for Earth and Sun imaging at a low cost and weight specifically using deployable technology. A team at the Air Force Research Laboratory created a design and prototype of a mechanism that deploys a 20 cm diameter photon sieve. The United States Air Force Laboratory used a similar design to create a CubeSat-based deployable photon sieve. The team at NASA Langley Research Center has researched photon sieves for conducting an Earth-observing experiment using LIDAR (Light Detection and Ranging) with a higher signal-to-noise ratio benefit from the PS. This paper provides a state of the art overview on existing PS CubeSat technology with deployable structures and applications. Especially, the paper introduces PS for LIDAR applications and discusses the CubeSat-based PS challenge being worked at the NASA Langley Research Center.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.