Abstract

The properties of the $B_c$-meson family ($c\bar b$) are still not well determined experimentally because the specific mechanisms of formation and decay remain poorly understood. Unlike heavy quarkonia, i.e. the hidden heavy quark-antiquark sectors of charmonium ($c\bar c$) and bottomonium ($b\bar b$), the $B_c$-mesons cannot annihilate into gluons and they are, consequently, more stable. The excited $B_c$ states, lying below the lowest strong-decay $BD$-threshold, can only undergo through radiative decays and hadronic transitions to the $B_c$ ground state, which then decays weakly. As a result of this, a rich spectrum of narrow excited states below the $BD$-threshold appear, whose total widths are two orders of magnitude smaller than those of the excited levels of charmonium and bottomonium. In a different article, we determined bottom-charmed meson masses using a non-relativistic constituent quark model which has been applied to a wide range of hadron physical observables, and thus the model parameters are completely constrained. Herein, continuing to our study of the $B_c$ sector, we calculate the relevant radiative decay widths and hadronic transition rates between $c\bar b$ states which are below $BD$-threshold. This shall provide the most promising signals for discovering excited $B_c$ states that are below the lowest strong-decay $BD$-threshold. Finally, our results are compared with other models to measure the reliability of the predictions and point out differences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.