Abstract
The electromagnetic transition between the nucleon and excited baryons has long been recognized as an important source of information for understanding strong interactions in the domain of quark confinement. We study the electromagnetic properties of the excitation of the negative parity the N*(1535) resonances in the nonrelativistic constituent quark model at large momentum transfers and have performed a calculation the longitudinal and transverse helicity amplitudes. Since the helicity amplitudes depend strongly on the quark wave function in this paper, we consider the baryon as a simple, non-relativistically three-body quark model and also consider a hypercentral potential scheme for the internal baryon structure, which makes three-body forces among three quarks. Since the hyper central potential depends only on the hyper radius, therefore, the Cornell potential which is a combination of the Coulombic-like term plus a linear confining term is considered as the potential for interaction between quarks. In our work, in solving the Schrodinger equation with the Cornell potential, the Nikiforov–Uvarov method employed, and the analytic eigen-energies and eigen-functions obtained. By using the obtained eigen-functions, the transition amplitudes calculated. We show that our results in the range lead to an overall better agreement with the experimental data in comparison with the other three non-relativistic quark models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.