Abstract
Although catalyst deactivation rate greatly varies depending on many factors, including the catalyst structure, reactor feed composition, and operating conditions; it is usually inevitable. Since catalyst deactivation modeling has so far been poorly addressed in the literature, in the present study, nine experimental sets of cobalt based Fischer-Tropsch catalysts activity-time data were considered to be modeled using an innovative sigmoidal pattern with amazingly meaningful parameters. Such theoretical models for catalyst life significantly facilitate the control of reactors during petrochemical industrial applications, where a constant reactor product flow rate is necessary. Five types of statistics were used to validate the goodness of the regression model. The results showed that the sigmoid model perfectly predicts the activity of the whole catalyst life for a wide range types of catalyst which is capable of being utilized as an important part of a reaction rate. For process conditions within the range of T=220–230 0C, P=20 bar, and H2/CO ratio=2, the two important constants of the model average 0.6 ± 0.1 and 0.42 ± 0.06 for steady-state activity and total loss of activity, respectively. The proposed model offers a significant advance over the existing macroscopic deactivation models, since different catalyst deactivation trends can be covered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.