Abstract

Disulfide-rich peptides are a class of molecules for which NMR spectroscopy has been the primary tool for structural characterization. Here, we explore whether the process can be achieved by using structural information encoded in chemical shifts. We examine (i) a representative set of five cyclic disulfide-rich peptides that have high-resolution NMR and X-ray structures and (ii) a larger set of 100 disulfide-rich peptides from the PDB. Accuracy of the calculated structures was dependent on the methods used for searching through conformational space and for identifying native conformations. Although Hα chemical shifts could be predicted reasonably well using SHIFTX, agreement between predicted and experimental chemical shifts was sufficient for identifying native conformations for only some peptides in the representative set. Combining chemical shift data with the secondary structure information and potential energy calculations improved the ability to identify native conformations. Additional use of sparse distance restraints or homology information to restrict the search space also improved the resolution of the calculated structures. This study demonstrates that abbreviated methods have potential for elucidation of peptide structures to high resolution and further optimization of these methods, e.g., improvement in chemical shift prediction accuracy, will likely help transition these methods into the mainstream of disulfide-rich peptide structural biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call