Abstract

AbstractThe recently developed Li‐excess cation‐disordered rock salts (DRXs) exhibit an excellent chemical diversity for the development of alternative Co/Ni‐free high‐energy cathodes. Herein, the synthesis of a highly fluorinated DRX cathode, Li1.2Mn0.6Ti0.2O1.8F0.2, based on cost‐effective and earth‐abundant transition metals, via a solid‐state reaction, is reported. The fluorinated DRX cathode using ammonium fluoride precursor exhibits more uniform particle size and delivers a specific discharge capacity of 233 mAh g−1 and specific energy of 754 Wh kg−1, with 206 mAh g−1 retained after 200 cycles. The combined synchrotron X‐ray absorption spectroscopy and resonant inelastic X‐ray scattering spectroscopy analysis reveals that the remarkable cycling performance is attributed to the high fluorination and thus enhanced Mn content, enabling the utilization of more Mn redox than the oxide analog. This study demonstrates a great promise to develop next‐generation cost‐effective DRX cathodes with enhanced capacity retention for high‐energy Li‐ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.