Abstract
The full electrification of transportation will require batteries with both 3-5× higher energy densities and a lower cost than what is available in the market today. Energy densities of >1000 W h kg-1 will enable electrification of air transport and are among the very few technologies capable of achieving this energy density. Limetal-O2 or Limetal-air are theoretically able to achieve this energy density and are also capable of reducing the cost of batteries by replacing expensive supply chain constrained cathode materials with "free" air. However, the utilization of liquid electrolytes in the Limetal-O2/Limetal-air battery has presented many obstacles to the optimum performance of this battery including oxidation of the liquid electrolyte and the Limetal anode. In this paper a path towards the development of a Limetal-air battery using a cubic garnet Li7La3Zr2O12 (LLZ) solid-state ceramic electrolyte in a 3D architecture is described including initial cycling results of a Limetal-O2 battery using a recently developed mixed ionic and electronic (MIEC) LLZ in that 3D architecture. This 3D architecture with porous MIEC structures for the O2/air cathode is essentially the same as a solid oxide fuel cell (SOFC) indicating the importance of leveraging SOFC technology in the development of solid-state Limetal-O2/air batteries.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.