Abstract
The study of quantum many-body spin physics in realistic solid-state platforms has been a long-standing goal in quantum and condensed-matter physics. We demonstrate separate steps required to reach this goal using nitrogen-vacancy (NV) centers in diamond. First, standard (TEM) electron irradiation is used for the enhancement of N to NV conversion efficiencies by over an order-of-magnitude. Second, robust pulsed and continuous dynamical decoupling (DD) techniques enable the preservation of arbitrary states of the ensemble. These combined efforts could lead to the desired interaction-dominated regime. Finally, we simulate the effects of continuous and pulsed microwave (MW) control on the resulting NV-NV many body dynamics in a realistic spin-bath environment. We emphasize that dominant interaction sources could be identified and decoupled by the application of proper pulse sequences, and the modification of such sequences could lead to the creation engineered interaction Hamiltonians. Such interaction Hamiltonians could pave the way toward the creation of non-classical states, e.g. spin-squeezed states, which were not yet demonstrated in the solid-state, and could eventually lead to magnetic sensing beyond the standard quantum limit (SQL).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.