Abstract

Generation of a local magnetic field at the nanoscale is desirable for many applications such as spin-qubit-based quantum memories. However, this is a challenge due to the slow decay of static magnetic fields. Here, we demonstrate a photonic spin density (PSD)-induced effective static magnetic field for an ensemble of nitrogen-vacancy (NV) centers in bulk diamond. This locally induced magnetic field is a result of coherent interaction between the optical excitation and the NV centers. We demonstrate an optically induced spin rotation on the Bloch sphere exceeding 10 degrees which has potential applications in all-optical coherent control of spin qubits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call