Abstract
BackgroundTamoxifen is important in the adjuvant treatment of breast cancer. A plasma concentration of the active metabolite endoxifen of > 16 nM is associated with a lower risk of breast cancer-recurrence. Since inter-individual variability is high and > 20 % of patients do not reach endoxifen levels > 16 nM with the standard dose tamoxifen, therapeutic drug monitoring is advised. However, ideally, the correct tamoxifen dose should be known prior to start of therapy. Our aim is to develop a population pharmacokinetic (POP-PK) model incorporating a continuous CYP2D6 activity scale to support model informed precision dosing (MIPD) of tamoxifen to determine the optimal tamoxifen starting dose. MethodsData from eight different clinical studies were pooled (539 patients, 3661 samples) and used to develop a POP-PK model. In this model, CYP2D6 activity per allele was estimated on a continuous scale. After inclusion of covariates, the model was subsequently validated using an independent external dataset (378 patients). Thereafter, dosing cut-off values for MIPD were determined. ResultsA joint tamoxifen/endoxifen POP-PK model was developed describing the endoxifen formation rate. Using a continuous CYP2D6 activity scale, variability in predicting endoxifen levels was decreased by 37 % compared to using standard CYP2D6 genotype predicted phenotyping. After external validation and determination of dosing cut-off points, MIPD could reduce the proportion of patients with subtherapeutic endoxifen levels at from 22.1 % toward 4.8 %. ConclusionImplementing MIPD from the start of tamoxifen treatment with this POP-PK model can reduce the proportion of patients with subtherapeutic endoxifen levels at steady-state to less than 5 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.