Abstract
Herein, cryogenic field‐effect transistors (FETs) are discussed. In particular, the saturation of the subthreshold swing due to band tailing is studied. It is shown with simulations and experiments that engineering of the oxide‐channel interfaces and a strong increase of the gate oxide capacitance are effective in improving the switching behavior of the device. The implication of scaling the oxide capacitance on the power consumption of cryogenic devices is investigated, too. Furthermore, an alternative for conventional doping in cryogenic transistors is discussed. Based on synchrotron X‐Ray absorption spectroscopy at total fluorescence (XAS‐TFY) and ultraviolet photoemission spectroscopy (UPS) measurements, it is shown experimentally that in true nanoscale devices, a simple coating yields a shift of the conduction band that is equivalent to a very high dopant concentration. As a result, nanoscale cryogenic steep slope FETs with strongly improved electrical characteristics become feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.