Abstract

The majority of older people wish to live independently at home as long as possible despite having a range of age-related conditions including cognitive impairment. To facilitate this, there has been an extensive focus on exploring the capability of new technologies with limited success. This paper investigates whether MS Kinect (a motion-based sensing 3-D scanner device) within the MiiHome (My Intelligent Home) project in conjunction with other sensory data, machine learning and big data techniques can assist in the diagnosis and prognosis of cognitive impairment and hence prolong independent living. A pool of Kinect devices and various sensors powered by minicomputers providing internet connectivity are being installed in up to 200 homes. This enables continuous remote monitoring of elderly residents living alone. Passive and off-the-shelf sensor technologies were chosen to implement data acquisition specifically from sources that are part of the fabric of the homes, so that no extra effort is required from the participants. Various constraints including environmental, geometrical and big data were identified and appropriately dealt with. A visualization tool (MAGID) was developed for validation and verification of numerous behavioural activities. Then, a subset of data, from twelve pensioners aged over 65 with age-related cognitive decline and frailty, were collected over a period of 6 months. These data were subjected to several machine learning algorithms (multilayer perceptron neural network, neuro-fuzzy and deep learning) for classification and to extract routine behavioural patterns. These patterns were then analysed further to ascertain any health-related information and their attributes. For the first time, important routine behaviour related to Activities of Daily Living (ADL) of elderly people with cognitive and physical decline has been learnt by machine learning techniques from selected sample data obtained by MS Kinect. Medically important behaviour, e.g. eating, walking, sitting, was best learnt by deep learning with accuracy of 99.30% during training stage and average error rate of 1.83% with maximum of 12.98% during the implementation phase. Observations obtained from the application of the above learnt behaviours are presented as trends over a period of time. These trends, supplemented by other sensory signals, have provided a clearer picture of physical (in)activities (including falls) of the pensioners. The calculated behavioural attributes related to key indicators of health events can be used to model the trajectory of health status related to cognitive decline in a home setting. These results, based on a small number of elderly residents over a short period of time, imply that within the results obtained from the MiiHome project, it is possible to find indicators of cognitive decline. However, further studies are needed for full clinical validation of these indications in conjunction with assessment of cognitive decline of the participants.

Highlights

  • Increasing life expectancy of the world’s population has resulted in a growing number of older adults

  • There has been an extensive focus on exploring the capability of Information and Communications Technologies (ICT) and new technologies such as autonomous systems, machine learning and big data within the MiiHome project

  • During this pilot study, dealing with the large dataset gathered from the 12 participants, all of whom had age-related cognitive conditions and frailty, was not an easy task

Read more

Summary

Introduction

Increasing life expectancy of the world’s population has resulted in a growing number of older adults. Universal Access in the Information Society the above trends [2] and show increasing numbers of elderly people who require social or clinical care due to age-related cognitive conditions and frailty [3] Those over 65 years who are hospitalized account for 62% of total bed days and on average stay 11.9 days in hospital, so that older people are the main users of both secondary and primary care [4]. The age structure of the population is expected to continue to change in the future; with the proportion of younger age groups continuing to decline [7], the ratio of caregivers to pensioners will decrease These have in turn put an increased burden on national health providers such as NHS and care delivery organizations

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.