Abstract

Generative mechanism-based models of social systems, such as those represented by agent-based simulations, require that intra-agent equations (or rules) be specified. However there are often many different choices available for specifying these equations, which can still be interpreted as falling within a particular class of mechanisms. Whilst it is important for a generative model to reproduce historically observed dynamics, it is also important for the model to be theoretically enlightening. Genetic programs (our own included) often produce concatenations that are highly predictive but are complex and hard to interpret theoretically. Here, we develop a new method - based on multi-objective genetic programming - for automating the exploration of both objectives simultaneously. We demonstrate the method by evolving the equations for an existing agent-based simulation of alcohol use behaviors based on social norms theory, the initial model structure for which was developed by a team of human modelers. We discover a trade-off between empirical fit and theoretical interpretability that offers insight into the social norms processes that influence the change and stasis in alcohol use behaviors over time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.