Abstract

Sb(2)S(3)-sensitized mesoporous-TiO(2) solar cells using several conjugated polymers as hole-transporting materials (HTMs) are fabricated. We found that the cell performance was strongly correlated with the chemical interaction at the interface of Sb(2)S(3) as sensitizer and the HTMs through the thiophene moieties, which led to a higher fill factor (FF), open-circuit voltage (V(oc)), and short-circuit current density (J(sc)). With the application of PCPDTBT (poly(2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)) as a HTM in a Sb(2)S(3)-sensitized solar cell, overall power conversion efficiencies of 6.18, 6.57, and 6.53% at 100, 50, and 10% solar irradiation, respectively, were achieved with a metal mask.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call