Abstract

Catholyte materials are used to store positive charge in energized fluids circulating through redox flow batteries (RFBs) for electric grid and vehicle applications. Energy-rich radical cations (RCs) are being considered for use as catholyte materials, but to be practically relevant, these RCs (that are typically unstable, reactive species) need to have long lifetimes in liquid electrolytes under the ambient conditions. Only few families of such energetic RCs possess stabilities that are suitable for their use in RFBs; currently, the derivatives of 1,4-dialkoxybenzene look the most promising. In this study, we examine factors that define the chemical and electrochemical stabilities for RCs in this family. To this end, we used rigid bis-annulated molecules that by design avoid the two main degradation pathways for such RCs, viz., their deprotonation and radical addition. The decay of the resulting RCs are due to the single remaining reaction: O-dealkylation. We establish the mechanism for this reaction and...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.