Abstract
Fluorine-19 has high NMR detection sensitivity-similar to that of protons-owing to its large gyromagnetic ratio and high natural abundance (100 %). Unlike protons, however, fluorine-19 (19 F) has a negligible occurrence in biological objects, as well as a more sensitive chemical shift. As a result, in vivo 19 F NMR spectroscopy and MR imaging offer advantages of negligible background signal and sensitive reporting of the local molecular environment. Here we report on NMR hyperpolarization of 19 F nuclei using reversible exchange reactions with parahydrogen gas as the source of nuclear spin order. NMR signals of 3-fluoropyridine were enhanced by ≈100 fold, corresponding to 0.3 % 19 F nuclear spin polarization (at 9.4 T), using about 50 % parahydrogen. While future optimization efforts will likely significantly increase the hyperpolarization levels, we already demonstrate the utility of 19 F hyperpolarization for high-resolution hyperpolarized 19 F imaging and hyperpolarized 19 F pH sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.