Abstract

We propose a nuclear-spin-polarization protocol in a general evolution-and-measurement framework. The protocol works in a spin-star configuration, where the central spin is coupled to the surrounding bath (nuclear) spins by flip-flop interaction of equal strength and is subject to a sequence of projective measurements on its ground state. Then a nondeterministic nuclear spin polarization could be implemented by entropy reduction through measurement. The optimized measurement-interval $\tau_{\rm opt}$ is analytically obtained in the near-resonant condition, which is relevant to the nuclear spins' polarization degree of the last-round measurement, the number of nuclear spins, and the coupling strength between the central spin and nuclear spins. Hundreds and even thousands of randomly aligned nuclear spins at the thermal state could be almost fully polarized with an optimized sequence of less than $20$ unequal-time-spacing measurements. In comparison to the conventional approaches, our protocol is not sensitive to the magnetic-field intensity, and it is robust against the extra counterrotating interaction in the near-resonant situation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call