Abstract

AbstractAlloying‐type metals with high theoretical capacity are promising anode materials for sodium ion batteries, but suffer from large volume expansion and sluggish reaction kinetics. Dispersing alloying‐type metal into a buffer matrix with interfacial anionic covalent bonding is an effective method to solve the above issues. Here, this bifunctional structural unit is designed by incorporating high‐capacity Sb metal into a rigid CrSe framework for fast‐charging applications. The high‐capacity and high‐rate sodium storage can be synergistically realized in the bifunctional SbCrSe system, where the rigid CrSe framework endows the SbCrSe3 anodes with superior structural stability and improved intercalative redox pseudocapacitance. Moreover, the volume expansion of Sb during discharge can be buffered by the CrSe chain‐like matrix. The novel SbCrSe3 anode delivers a high charge capacity of 472 mAh g−1 at a current density of 0.4 C and retains ≈100% capacity at 60 C over 10 000 cycles. Further in situ and ex situ characterization reveal the multistep reaction mechanism, and the breakage and formation of reversible SbSe bonds during (dis)charge. The proposed bifunctional structural unit that combines alloying type anodes and intercalative anodes is expected to pave a new road for the development of high capacity and high rate anode materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call