Abstract

Quantum spectroscopy in solids directly detects nonlinear changes created exclusively by quantum fluctuations of light. So far, it has been realized only by projecting a large set of measurements with a coherent-state laser to a specific quantum-light response. We present two complementary experimental approaches to realize intense and ultrafast thermal-state sources. We investigate the effects of continuous excitation from a superluminescent diode (SLD) as well as an ensemble-averaging technique using phase-modulated pulses. By measuring excitonic nonlinearities in gallium arsenide, we demonstrate that the experimentally realized thermal-state source produces significantly reduced many-body nonlinearities compared to a coherent-state excitation. We also review experimental approaches toward future realization of quantum spectroscopy with thermal states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.