Abstract

We demonstrate the value of inner-shell X-ray absorption spectroscopy for dense-plasma atomic physics and explore the coupling between constraint of the thermodynamic state and constraint of ionization-potential depression models. Synthetic K-shell absorption spectra are generated along a radius from a point-like core and analyzed using different ionization-potential depression models. Within this synthetic analysis framework, we identify plasma conditions (Te=400 eV, ρ=40 g/cm3) accessible by spherical implosions where K-shell absorption spectra discriminate between models if the material temperature is measured to a precision of 20%. The analysis is extensible to a finite-sized core and can be used to guide future studies of ionization-potential depression, informing material and radiative properties of matter in fusion plasmas and stellar interiors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call