Abstract

A sustainable system capable of simultaneous removal of organic contaminants and hydrogen generation in wastewater treatment operation was studied using hematite electrode in the presence of Mn(II), PEC-Mn(II), as a proof of concept. The photoelectrochemical (PEC) system exhibited methylene blue (MB) decolorization threefold faster than that of photo-Fenton processes and yielded comparable photocurrent density to relative to the control system, i.e., PEC water splitting in the absence of MB at otherwise identical operation conditions. Furthermore, the advantages of PEC-Mn(II) system were no H2O2 addition, hydrogen production potential, and ease in Mn(II) separation via the formation of MnO2 precipitates during wastewater treatment operations. The PEC-Mn(II) process is a promising and sustainable approach toward wastewater treatment with the capability of concurrent photochemical energy generation. Moreover, the PEC-Mn(II) process can be an emerging energy-from-wastewater alternative in addition to other systems such as microbial fuel cell and anaerobic digestion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.