Abstract

Abstract A 3D numerical model was built to serve as a virtual microphysics laboratory (VML) to investigate rainfall microphysical processes. One key goal for the VML is to elucidate the physical basis of warm precipitation processes toward improving existing parameterizations beyond the constraints of past physical experiments. This manuscript presents results from VML simulations of classical tower experiments of raindrop collisional collection and breakup. The simulations capture large raindrop oscillations in shape and velocity in both horizontal and vertical planes and reveal that drop instability increases with diameter due to the weakening of the surface tension compared with the body force. A detailed evaluation against reference experimental datasets of binary collisions over a wide range of drop sizes shows that the VML reproduces collision outcomes well including coalescence, and disk, sheet, and filament breakups. Furthermore, the VML simulations captured spontaneous breakup, and secondary coalescence and breakup. The breakup type, fragment number, and size distribution are analyzed in the context of collision kinetic energy, diameter ratio, and relative position, with a view to capture the dynamic evolution of the vertical microstructure of rainfall in models and to interpret remote sensing measurements. Significance Statement Presently, uncertainty in precipitation estimation and prediction remains one of the grand challenges in water cycle studies. This work presents a detailed 3D simulator to characterize the evolution of drop size distributions (DSDs), without the space and functional constraints of laboratory experiments. The virtual microphysics laboratory (VML) is applied to replicate classical tower experiments from which parameterizations of precipitation processes used presently in weather and climate models and remote sensing algorithms were derived. The results presented demonstrate that the VML is a robust tool to capture DSD dynamics at the scale of individual raindrops (precipitation microphysics). VML will be used to characterize DSD dynamics across scales for environmental conditions and weather regimes for which no measurements are available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call