Abstract

The present authors have been developing a master-slave neurosurgical robot and its intelligent control for tasks in the deep and narrow spaces of the brain. This paper proposes a robotic autonomous control method for avoiding possible collisions between the shaft of a surgical robotic instrument and the surrounding tissues. To this end, a new robotic simulator was developed and used to evaluate the proposed method. The results showed the proof of concept of the proposed autonomous collision avoidance, which has the potential to enhance the safety of robotic neurosurgery in deep and narrow spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.